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vept. Aero. & Astro., Mass. Inst. Technology, Cambridge, Mass. 02139 and

Dept. Mechanics, Royal Inst. Technology, S-10044 Stockholm 70, Sweden

ABSTRACT

The large-scale coherent motion associated with turbulent bursting
in a boundary layer is studied with the aid of an inviscid model. The
space-tinie evolution of a disturbance of large horizontal dimensions
compared to the wall layer thickness is analyzed under the assumption
that the mean flow is parallel. The initial velocity field is assumed to
be set up by the action of the turbulent stresses produced by a patch of
secondary instablity. For short and moderate times, the effects of vis-
cosity and pressure are small, and the evolution of the disturbance is
conveniently studied with the aid of Lagrangian techniques. The model is
able to reproduce qualitatively many of the observed features of the
bursting motion such as the formation of longitudinal streaks, the rapid
acceleration after initiation of bursting, and the strong y-coherence of
the u-fluctuations. In particular, the model demonstrates how action by
the mean shear makes the disturbance eventually evolve into a thin inter-
nal shear layer, thus making possible the appearance of a new region of
inflexional instability and hence burst regeneration-downstream of the
original burst.

1. INTRODUCTION

The discovery of recent years that turbulence in the wall region of
a boundary layer is highly intermittent and possesses a quasiperiodic
and fairly distinct "bursty” structure (see Frenkiel et al. 1977 for a
number of recent papers on this subject) has pointed to the necessity of
analyzing in depth the dynamical processes involved in the generation of
turbulent fluctuations in this regicn. This requires the adoption of a
deterministic rather than a statistical approach since the usual statis-
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tical methods are not suitable for dealing with such highly intermittent
processes. because the flows under consideration are extremely compli-
cated undeady three-dimensional ones dominated by strong nonlinearity
and rotation, the development of a successful theory necessitates a very
careful choice of a theoretical model, one that it is simple enough to
analyze, yet incorporates the major dynamical effects. Early such ef-
forts emphasizing different aspects of the dynamics were those of Theo-
dorsen (1952), Einstein & Li (1956) and Sternberg (1965).

Since turbulence may in some sense be regarded as a manifestation of
flow instabilities, it is of considerable theoretical interest to try
to relate the dynamical processes in the fully developed turbulent flow
to those studied in hydrodynamic stability theory. This approach (Lan-
dahl, 1967, Bark, 1975) has proven partially successful in explaining
some of the observed statistical properties of fluctuating pressures
and velocities in terms of the propagation characteristics of linear
waves. Later findings (Landahl, 1975, 1977) indicate, however, that
other types of disturbances besides waves of the Tollmien-Schlichting
type must be incorporated in order to model properly the fluctuation
field. On basis of a two-scale model (first proposed in Landahl, 1973),
in which the main nonlinear interaction was assumed to occur through a
coupling between small and large scales of motion, it was concluded
that large-scale motion in a localized region, a "coherent structure",
would result from nonhomogeneous mixing in a patch of secondary insta-
bility of the inflectional type. In addition to waves of scales typical
of the dimension of the patch, the large-scale eddy produced by the
mixing will also contain a convected portion which will move downstream
with the local mean velocity. The shearing of the convected eddy was
found to lead to the formation of a new thin shear layer further down-
stream (Landahl, 1975), thus giving rise to a new inflectionally un-
stable region downstream of the original burst, ana thereby making
burst regeneration possible.

In the present paper a more detailed analysis of the dynamics of a large-
scale coherent structure formed by the action of localized mixing is
given. The approach taken is to treat the flow as an initial value
problem with initial conditions provided by the large-scale momentum
transfer caused by the mixing due to secondary instability. Since the
processes involved are primarily inertial, viscosity is neglected.

On the assumption that strong nonlinearity is primarily confined to the
initial time period during the secondary instability phase, the evolu-
tion of each coherent structure could be analyzed separately, independ-
ently of other large-scale motion and statistical superposition used to
model the random fluctuating flow field, if so desired.

2. FORMULATION OF THE MODEL

The theoretical model will be formulated on basis of the two-scale model
proposed by Landahl (1973). The fundamental ideas underlying this model
and some of the conclusions which can be drawn from it have been discug-
sed earlier (Landahl, 1975, 1977). Here we shall only give a brief review




-of its main features and draw some conclusions from it regardin? the
overall characteristics of the initial large-scale velocity field.

To understand the characteristics of the initial large-scale velocity
field we must first discuss the behavior of the small-scale motion.
The secondary instability giving rise to the small-scale motion is as-
sumed to be of the Kelvin-Helmholtz type arising locally on a thin in-
ternal shear formed in the flow. The secondary instability, and hence
the small-scale turbulence production, draws its energy from the velo-
city difference across the shear layer, and the resulting mixing will
be such as to tend to remove the velocity difference (Landahl, 1975),
The instability, and hence the turbulence production, will therefore
eventually be quenched when the small-scale mixing has removed the lo-
cal inflection in the large-scale velocity distribution. After an ini-
tial period of growth, the small-scale motion will therefore begin to
decay slowly due to viscous dissipation. After the completion of the
initial nonlinear growth phase, the motion will thus consist of a
large-scale field on which is superimposed a slowly decaying small-
scale velocity field, and the interaction between the large an small
scales then becomes weak. The subsequent evolution of the large-scale
velocity field may therefore be analyzed with the effects of the small-
scale motion neglected. Furthermore, since the mechanisms involved are
primarily inertial, the effects of viscosity may be omitted, at least
during a moderate time period after the creation of the coherent
structure. Since observed typical dimensions of the large-scale eddies
are of the order the boundary layer thickness, the downstream rate of
change of the mean properties of the boundary layer may be neglected
in the analysis and therefore the parallel-flow assumption adopted for

the mean flow. With disturbance velocities u; (u] U, U, =V, U, = W),
pressure p, and mean velocity U(y) the equat]ons of motign may tRUS be
written
D(u; + &,.:U(y)) *
i 1i SRS
Dt = ;33%1.‘ (1)
du;
e (2)

1

The boundary conditions are that the component u, = v is zero at the
wall (y = 0) and that the aisturbances vanish at“large distances. The
region occupied by the disturbance shall be assumed to be localized
and have a typical horizontal dimension of &, which will be assumed

to be large compared to the thickness § of the wall layer. Since the
mean shear outside the wall and buffer regions is quite small compared
to what it is inside this region, one may treat the mean flow in the
wall layer as a separate boundary layer having a free-stream velocity
equal to the value at the edge of the wall layer which may be taken

to be located at approximately y* = 50.




Consider now the effect of a small-scale secondary instability occur-
ing over a patch of typical horizontal dimension £ and confined with-
in the wall region (see Fig. 1).
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Figure 1. Two-scale model (conceptual) for initiation of
coherent structure.

By integration of (1) and (2) over planes x, = y = const. the fol-
lowing relations may be shown to hold:

f?vdxdz =0 (3)
o t ©

[fxvdxdz = - [dtf[uvdxdz ‘ (4)
-Q0 ti =00

f?xpwdxdz = -p-Thyf?uvdxdz (5)
) Q =-eo

where t. is the time of initiation of the disturbance and p_ the
wall préssure. In deriving these it has been assumed that the dis-
turbances drop off with distance from the center of the patch fast
enough to make boundary terms vanish. A localized event producing
Reynolds stresses of the usual sign (<uv><0) will thus impart a mo-
ment of momentum to the flow, through the action of the surfacd
pressure, so as to give it a forward rotation in a sense opposite
to the mean shear (Landahl, 1975, 1977). Large instantaneous Rey-
nolds stresses are produced only as long as the small-scale instabi-
lity persists; thus the right-hand side of (4) will receive its ma-
Jjor contribution during the secondary growth stage, and the non-
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linear effects from the small-scale motion will be small thereafter. .
Therefore, the subsequent evolution of the large-scale glow may be
treated independently from the small-scale motion, and each coherent

structure analyzed separately.

3. EVOLUTION OF THE COHERENT STRUCTURE

Following the discussions in the previous section we shall analyze
the large-scale motion as an initial value problem with initial condi-
tions u_, v_, w_ specified at t 0 and selected so as to be commen-

surate with the properties of tge secondary instability. Thus
ffxvodxdz >0

Also the initial u_-distribution should be such that the streamwise ve-
Tocity (U + ug) is%free from reflections. (For simplicity, will be
taken to be zero in the numerical example to be treated be?ow). A for-
mal solution of the system (1), (2) is most easily constructed on basis
of material ("Lagrangian") coordinates

E'I = (59"94) %

defining the position of each fluid element at t = 0 (see Fig. 1). From
the first and third of (1) it follows that

| S
u+l = uo(E,n,l;) + U(n) - % Iprt'.I (6)
5 _
i 1%
- wo(g,n,c) - B-gpth] (7)

where [ & Dty ,denotes integration following a fluid element, i.e.,
holding €. constant The laboratory ("Eulerian") coordinates are then
determined from

x
n

' t
g+ (Usut -t J(t-t)p, 0ty (8) |

N
[}

. 1 } §
g +wt ;.o (t t])pth] (9)




The pressure is found by integration of the second momentum equation
along x, z = const., ‘

p=opf %% dy ' (15}
y ;

The second velocity component, finally, is found from the requirement
that continuity must be satisfied. The transformation of a volume ele-
ment from laboratory to material coordinates is given by

dxdydz = Jdgdndz (11)

where J is the Jacobian

X.
J = det (2...‘.)
oL .
gJ
For a fluid of constant density we must have that

J =1

(12)
(Lamb, 1932, section 15). Hence, upon expansion of (12) it follows
that
A]yE + Azyn + A3y; =1 (13)
where
¥ : . 15_) (14a)
Nty Al (dy X,Z
A, = x,2. ~ X 2, & (gﬂ) (14b)
2" Tt Toe T \dy/y
% o 5 92) (14c)
g Rt e s (dy X,2
The identities expressed in the last column of (14) are found by
direct calculation setting dx = dz = 0 and making use of (13). One
may easily solve (13) by the method of characteristics, or equiva-
lently, by direct integration of (14 b), which gives
y =
0 (“25x 2

r n= 0 has been taken

where the boundary condition that y fo
9) into (14 b) we find

=0
into account. By substituting (8) and (

,
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S N ES R T (16)

(t"o; - Ilc)(twoa - 135)

where
1 ¢ i 17

I, = 3{) (t - t)p,Dt, (17)
and

i al

375 (t- ety (18)
It is convenient to define the quantity

n -I-Az
Rmzy-n=£(—7\.2——) dny - (19)
X,Z

which gives the displacement of the fluid element in the direction
normal to the wall, the quantity of primary interest in Prandtl's
(1925) mixing-length theory. From this, the y-component of the per-
turbation velocity may be directly obtained

Dg -
= _.m
V = 5t : (20)

and then the pressure from (10).

The formal solution given by (6) - (10) and (16) - (20) is exact
within the framework of inviscid theory but can only be evaluated by
an iterative procedure. Fortunately, the problem considered allows
one to introduce some simplifying assumptions which make the evalua-
tion much more tractable. The assumption of a large horizontal scale
compared to the thickness of the wall layer allows one to neglect
the pressure variation through the boundary layer (the usual boundary
layer assumption) so that one may set

re
pap5=p{-5‘édy (21)

throughout the layer, where ps is the pressure at the edge of the
boundary layer. The flow outside the layer may be taken to be irratio-
nal, provided the initial disturbance is such that fluid elements ori-
ginating inside the shear layer do not penetrate outside y = §. From
the equations for an irrational flow one finds that

b Aais

-




Ps d 3 Yo£ 2w e A
;‘----(—BT"'UOO;J;()Q'?‘(@X"'QZ‘*Vd) (22)

where U_ is the velocity outside y = &, ¢ the velocity potential, and
subscript & denotes values at y = 6. The velocity potential may be cal-
culated in terms of Vs from the integral

@ v (xq:2y,t)dx, dz

/

ol (x-x])2+(z-z]')2

Taking 2/U_ to be a typical time scale of evolution for the large-
scale motion one may estimate the pressure to be of order (for times
which are not large compared to 2/U,) :

== 0(uve) (24)

where Vg is a measure of the amplitude of the initial motion. Using
this, one finds that the pressure integrals I] and I3 are of the order

] 2

11’3 =0 [t qmya/z] (25)
and their contribution to the integrand in (19) of order (taking only
the linear terms)

t2y s /02 (26)
This will be negligible compared to the linear term

& t(uog + w0;) =t vOn
which is of order t Vé/d » Whenever

t U /e << /8 (27)

Hence, for §/2<<1 the effects of pressure may be neglected for times
which are not large compared to the time needed for the disturbance
to be convected downstream a distance equal to its own length.

In the analysis which follows the perturbations are assumed to
be small so that terms involving products of the initial velocity
components may be neglected in the solution (19). From (16) it follows
that this is permissible provided
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vot << § ( )

For times of order &/vgy and larger, nonlinear selfdistortion effects
may become important. Only for very weak disturbances such that

VLU << (s/2)2 (29)

will the nonlinear effects be small compared to those of the pressure.
If (29) is not satisfied, the solution may be obtained by iteration on
the pressure as follows. First, the solution (19) is calculated by neg-~
lecting I, and I3 in (16), Second, the pressure is obtained from (22)
and (23), Iy and I; are computed, and then an improved value of m de-
termined, etc. It s difficult to assess the convergence properties of
such a method, however. Possibly, a step-by-step procedure in time in
which after each time step a new initial velocity field is calculated
could be used to study the flow behavior for large times.

To investigate the qualitative effects of pressure for large times,
we have here instead made use of the linearized solution. Neglecting
all terms which are quadratic in the initial velocity components we
find from (10) - (19)

: s 80 e
= <1
= 1& + A,
where 3
vg = 32/ ax2 + 32/ Y4
and
Sy =& = U(n])(t-t]) (t] = 0 in the first term)

Here, use has been made of continuity of the initial velocity field
and the approximations

Xg+ U(y)t , yoen, z>¢ (31)

The first term, 9(1)in (30) may be regarded as the purely convected
solution. The second term, A% , gives the lowest-order correction
due to the pressure. The pressure is now approximated by




© Vs dx]dz]

Bol (2+y 2y
2n \at © 3 , N
P Tl (a X) -0 \/ (X"'X-I)z + (Z_Z])z

(32)

and the perturbation velocity components by

t

' 1
u = u (Esys2) = 2 U (y) -5 £ P Dt (33)

(34)

(35)

4. LARGE-TIME BEHAVIOR

We shall now consider the large-time behavior of the solution
(19) under certain simplifying assumptions. It follows that for mo-
derately large times such that (27) and (28) are satisfied both the
pressure and nonlinear terms may be neglected in (19) so that the
fluid element vertical displacement may be approximated by the line-
arized expression

1 . : 36
2m = lé ) =t £ VOn(E]sﬂ]sz)dn] (36)
where '

Eg = X - U(ny)t
By change of integration variable to E] this may be written

2 =

- Yon (El,n];z)dgl . (37)

W — X
< I—a

1
where £ = x - U(y)t and where Ui is given by

/0




Up = U (ng) = (x - &)/t (38)

Consider now x/2>>1 and large times (but within the limits set by (27)
and (28)). Since sizeable contributions to the integral (37) come only
for regions £ = 0(x/&) » one may set

U] ~ X/t (39)
and ny may thus be replaced by a constant in (37) giving
g o= l—-? v, (E13n,32)d
T Toptipeipasiiiy (40)
U] £

where we have replaced the upper limit by infinity since v, approach-
es zero for x/&>>1. The solution for 2, will have the charaBter illust-
rated in Fig. 2.

(@) (b)
saais T
b2 S
LRl L0 VAN
$ £
Figure 2. The fluid element displacement, &, in the
direction normal to the wall for large times (conceptual):

a) as function of & =x - U (y)t
b) as function of y. U, = U (n]) = x/t.

For large negative £ (corresponding to large y) the range of
integration will include the whole streamwise range of nonzero
values of v_, so that ¢, tends to a limiting nonzero value (pro-
vided “Tvde* 0 ) above y = n . For large positive £, on the other
hand, {Corresponding to small y) the Tower Timit will tend to +e
and the integral, and hence %y, will become zero. The fluid element
displacement will hence vary rapidly, when tU’>>1, in a region
around y = n, with a thickness of order 2/U’t. Since, when the
pressure terth is neglected in (33)
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u e u (€sy>2) - 2,0 (y) (41)

i . it follows thata thin shear layer, of thickness §_ = 2/U't, decreasing
» as the inverse of time,will form. It also follows from the second term
' of (41) that the streamwise velocity will show a strong y-coherence
for y >n,. Such coherence has been observed in the experiments by
B]ackwel&er & Kaplan (1976).

For the onlinear case one must include the poss1b111ty that A
could become zero in some pecint for large times such that v /6 %6)
The conditions under which this may arise have not been 1nvestigated
however.

The long-time effects of pressure may be studied on basis of the
linearized equations (30) - (35). Application of Fourier transform in
X, z and t to (30), (32) and (34), with

= [Jf e'i(ax FbE o wt)zmdxdzdt (42)
gives
=YXy | e Rt (1),
g2 =———gak f—— ey s AR (43)
" o [ia(Uq=c)] ° o Lia(Uy-c)] 0 .
LRGN TSR :
s P == ol - e) a kK (44)

In these, caret denotes triple Fourier transform as in (42), tilde a
transform with respect to x and z, only, e.q.

v, = iz g e Bz)vodxdz (45)
and

Uy = U(n])

c = w/a
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The behavior of the solution for §/2<<1 is obtained from the
transformed solution for small values of o and B . Similarly, the
large-time behavior may be determined from the transform for small c.
From the solutions for g, and p the velocity components may be found
from (33) - (35), so only these quantitatives will be considered.

Combination of (43) and (44) gives

A (1) _
*ms = ~ (46)
24 -2
Lt k(U - ) J (U - ) dn,
)
Hence,
J 3
: sy
A = - -
e k(U - ¢ ks o : (47)
L+ k() - c) g (u] - ¢) dn]
where
o4 ) SN -2
2 = b= o
ms ({ [1(!( 1 C)] Vo (ﬂ])dnl (48)
Expansion of the denominator in (46), (57) for small c and k yields
e -2
1+ kU, -¢)” [ Uy - c) “dng = 1- (49)
0

: k(u, - ¢c) u, : R(U, - c)2 o in ( U - ¢ )

[ 13 Cc
C Uc U

c =56

Index c denotes values at n=n_, where n_ is defined by U(n.) = c.
That branch of the logarithm in®the second term which is obtdined by
going below the integral must be chosen. This follows from the treat-
ment of the problem as an initial-value one; convergence of the Fourier
time integral then requires that ac has a positive imaginary part.
(This difficulty is familiar in the theory of hydrodynamic instability
for an inviscid flow, see Lin, 1955). For small k it is found that




(49) has a zero for ¢ = Co? where

c
2 - A o) &
C Tegid -0y, (m- lnq)/UC ]

~ ' 23 e pd 2 o ;
KU UC+ TKEUZ U UL+ 0(k) = (e, + icy;)/U,

where q = k Qx/U;wThis gives the eigenvalue for an infinite wave train of
(a small) wave number k in an inviscid parallel shear flow. (The approx-

imation underlying (50) is the same as the one employed in the early ana-
lytical approaches to hydrodynamic stability theory. In fact the integral
in (49) is identical to the integral K, in Lin, 1955 , p. 44). For

U’*> 0, which will occur when the ve]olity profile has an inflection point

ssmewhere, the imaginary part of c_ is positive and the waves will grow,
i.e. the flow is unstable to small disturbances. The mean velocity pro-
file of interest here has U’’<0 everywhere, hence the flow is stable in
the hydrodynamic sense. From (50) it follows that

2 () I3

which is of order §/¢ for k = 0(12) and thus small under the assumptions
of the present theory.

For the study of the long~time behavior of a disturbance of large
horizontal scale we need only retain the lowest-order terms in k and c,
provided all poles in the transform are properly represented. By approx-
imating the integrals in (47) and (48) through expansion of the inte-
grand about the point y_ in the same manner as that employed in (49) and
retaining only poles, but not logarithmic terms in c and U-c (which give
rise to contributions varying as inverse powers of t), we obtain

- M)
~_on'tc u
e e (52)
e (e = e c)
But from (43) we find in the same manner
(1) _ Yon(nd) 1y
[} o ;
m . CGAU=%} (53)
c
Hence, we may set, within the same approximation,
2 c_ (1)
™ T ™ (54)
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After inversion, the results may be cast in form of the following
convolution integral:

-C0

t )
b, = somr J dty [f G6(xexpazezgstot )l (x yazg oty dxgdz, (55)
0

where G is the inverse transform of

Eraplo (56)

a (c - co)

An asyiiptotic analysis for x, t»~ under the assumption that ¢ .< 0
for all non-zero wave numbers, but that ICqjl/coyr << 1 (which s
consistent with the assumption §/2 <<, see (54), gives the following
simple approximate result:

[XZU.

—E | - Htu - 57
U.,,(tum-n] (ty,, - x) (57)

Here, H(x) is the Heaviside step function and Ué =U'(yc) is defined by
(c.f. (39)) ‘

U, = U(yc) = x/t (58)

In deriving (57), use has been made of (the first of) (50) with the
imaginary part neglected, i.e. taking

¢o/Uo = q/(1 + Q) (59)

It follows from (55), (57) that the effects of the pressure causes
the leading edge of the disturbance to propagate with the free-stream
velocity U, . This is in accordance with the finding by Gustavsson
(1978), in which it is shown that the continuous spectrum of the solu-
tion for a disturbance initiated in a boundary layer gives rise to a
portion propagating with the free-stream velocity, both in the viscous
and in the inviscid cases. It can also be shown from (55), (57) that

tends to zero as t-2 or faster as t»» for fixed x, in accordance
with the result of Gustavsson (1978).

0f possible significance is also that (57) shows a definite span-




wise periodicity with a wave length increasing with time. This will
also cause a cut-off for the larger spanwise scales, so that they

tend to propagate with a lower velocity (tUs-x larger) than those with
small spanwise scales. That the highest propagation velocities are
attained by the disturbances of the smallest spanwise scales is a
consequence of the form of the approximate dispersion relation (50).
This was derived under the assumption of a large horizontal scale, so
that the propagation velocities near y_ predicted for the small scales
are not correctly given by this theory.

An interesting limit is that for tse with x/t = U. held fixed.
The argument of the sine in (57) then tends to a fixed value, and one
can show that gm approaches a nonvanishing value for t»«, provided
U(y)<Uc<Uo. Hence, the streamwise dimension of the disturbed region
will grow as t(U, - U(y)). Since the largest differences between the
free tream velocity and the Tocal mean velocity U(y) are found near
the wall, one would thus expect the most highly elongated disturbances
to appear there. This may provide a possible explanation for the
streaky structure observed to occur in the turbulent boundary layer
in the region close to the wall. However, in a real viscous flow the
pressure cannot give rise to nondecaying disturbances, unless neutrally
stable or growing waves ¢ 2 present because of instability. In the in-
viscid case, waves of o+ will always be nondecaying, even if the flow
is hydrodynamically stabie, and they provide the main contributions to
the nondecaying disturbances in the limit of t»~. In the viscous case,
the waves with a»0 will be decaying, and the disturbed region will
therefore not continue to grow forever, but decaywill set in at some
finite value of streamwise to spanwise wave length.

It is of interest to estimate the time required for viscous
effects to become important. By comparing the rate at which viscosity
diffuses the internal shear layer with the rate at which it is being
thinned by stretching of spanwise mean vorticity, Landahl (1977)
arrived at the following estimate of the time t, at which viscous
diffusion and stretching balance:

AP
Cy ~ (W ) (60)
In terms of wall variables, taking for U' the value at the wall one
finds

t; 5 (2+)2/3
which shows that viscous effects are likely to become important before
the disturbance has travelled a distance downstream many times its own
streamwise length. The time required for viscous diffusion from the
wall to be felt in the flow is given by

tvw ~y2/\)
which in terms of wall variables gives

+ +2

,
¢




which appears to give a somewhat less severe restriction, except in
the immediate neighborhood of the wall (y* < 5, say).

5. NUMERICAL EXAMPLE

A numerical example will be used to illustrate the application of the
simplified model and a comparison made with experimental data. From
(3) it follows that the initial v-distribution must be such that the
net vertical flow across a plane y = const. must be zero. According to
(4) the moment of v, with respect to the z-axis should on the average
be positive, since <uv> is negative, typical v,-distribution will
thus have values that are positive downstream and negative upstream of
the center of the disturbance. Also, since the Reynolds stresses drop
to zero for y = 0 and for y = §, the initial v-distribution must be
zero in these limits and have a maximum near the position of maximum
turbulence production. For the calculations presented here, the follow-
ing vo-distribution which satisfied these conditions was chosen :

2 o +\2 '
@) -G - €

In this, 2¥ and 2! are scaling factors to be suitably selected. The plus

superscript is used to indicate that viscous wall variables will be used
in the presentation of the results. Fig. 3 shows numerical values for

o s 32 L + _
Co = V2 e s 8y = 50 and 12 = 16
0 —T1T T— "
yb
r,’

10

o : e i
o xo' ;0
Figure 3. Initial condition used in numerical example Uy ® 0,
Vo from (61).
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This vo-distribution has a maximum at y+ = 16 and an overall streamwise
dimension of approximately 200 in wall units, values which are not in- .
consistent with experimental data. The value of C, was selected to make
the maximum of v, equal to unity (i.e. equal to f%e wall friction velo-
city in dimensional form). At y* = 40, v is about 0.03 and hence of
negligible magnitude above this yt-value. The character of the solution
depends primarily on the scaling factor &F; by a simple linear rescaling
the results for a given parameter combina€ion may be applied to any other
desired combination of C_ and ¢¥. For a representation of the mean velo- :
city distribution the si%p]e exponential approximation proposed by
Schubert & Corcos (1965)

vt =16 (1 - e V16, (62)

was found to give adequate accuracy for the present purpose.

Fluid element displacements %y, and from this the u-perturbations,
were calculated with pressure effects ignored. Sample results are shown
in Fig. 4 and 5. At first, the streamwise velocity perturbation grows
rapidly, and the flow pattern is stretched out in the streamwise direc- !
tion. A shear layer is seen to form and intensify as it is convected
downstream. For t* = 5 it is just beginning to appear between about
x: -50 and x* = 0, and for t* = 15 it is most intense at around
X 50.
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Figure 4. Distribution of streamwise velocity perturpa?ion u
at t*¥ = 5 for model example. Dotted line+gives position of
fluid elements originally located along y = 50.
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Figure 5. Distribution of streamwise velocity pgrturbation
at t* = 15 . Dotted line gives position of fluid elements

originally Tocated along yt = 50 .

The displacement of the outer edge of the wall layer (taken to
be located at y* = 50) is also indicated in both figures. For t* = 15
the displacement has become so large that the validity of the linear-
ized theory may be seriously in doubt for this choice of initital velo-
city amplitudes. Nevertheless, the characteristic features shown by
“the theory such as the appearance of a bulge next to a depression
further downstream are likely to be correctly represented. The depres-
sion and bulge will be convected downstream with a velocity less than
Ueos and the fluid riding over the outer edge of the wall layer will
induce a pressure pattern which could be expected to consist of an
overpressure in the region below the depression and an underpressure
below the bulge. This pattern will then disperse as waves.

Perhaps the most revealing way to present the results is to show
how the perturbation velocity distribution at a given downstream loca-
tion varies with time. This would be what would be seen in experiments
such as those of Blackwelder & Kaplan (1976) in which instantaneous
velocity distributions were measured by a hot-wire rake. The variable-
interval time-averaging (VITA) detection and sampling method employed
by them could be expected to pick out structures which have formed just
upstream of the measurement station. Accordingly, the station x* = 50,
a position about half-way downstream of the center of the initial dis-
turbance, was chosen as one which might correspond qualitatively to the
experimental situation. In Fig. 6 are shown the streamwise perturbation
velocities as function of y* at various nondimensional time tt* after
the initiation of the disturbance. One sees first a velocity defect ex-
tending throughout the whole layer. This arises because the station con-
sidered is first affected by fluid elements which have been lifted up
by the initial vy-distribution. At t* = 10 the regions further out from
the wall have begun to receive fluid elements travelling towards the




wall, and an accelerated region begins to fill up the whole y+ -range.
The perturbation velocities then decay slowly to zero. ;

y* ]
" 1
20} —
e e il
t'=s =10 =15 =20 =40
2 u 4 ;
Figure 6. Streamwise perturbation velocity profile for '
x* = 50 at various instances of time.

The model calculations may be compared to the conditionally samp-
led perturbation velocities obtained by Blackvelder & Kaplan (1972)
using their VITA procedure. These are reproduced in Fig. 7. As seen, the
results obtained from the theoretical model are remarkably similar to
the experimental ones. The most characteristic features of the mea-
sured data, which are correctly represented by the theory, is the
strong shear layer, which appears to propagate towards the wall, and
the very rapid acceleration associated with the passage of the shear
layer. The experiments also show the predicted slow deceleration back
to the undisturbed mean flow. The main qualitative difference is the
‘ observed excess velocity in the outer layer for early times which is
not included in the simplified model. This velocity excess is probably
a manifestation of the wallward motion (the sweep) which has been ob-
served to precede the bursting (Corino & Brodkey, 1969 O0ffen & Kline,
1974) and which appears to be essential for the initiation of the
1ift-up and subsequent break-up of the flow in the wall region. This
sweep is believed to originate in a previous burst further upstream,
Since it was assumed for the initial conditions that uy = 0, the cal-
culated results will show small streamwise perturbations in the outer
region for small times.
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Figure 7. Conditionally (VITA) averaged u-perturbation
velocity profiles with positive and negative time delay t
relative to the time of detection obtained in experiments
by Blackwelder & Kaplan [29].

The sign predicted by the present theory for the perturbation
velocity in the outer region caused by an earlier upstream burst may
be determined from the approximate asymptotic solution (40). For values
of y greater than the value y yoimax fOr which vq has its largest
; . magnitude, vq, is negative fo# %Ae éownstream region in £ and positive
] for the upstream region. Therefore, the integral in (40) will be nega-
tive, and the fluid elements therefore tend to be displaced towards the
wall in this region (see Fig. 8), i.e. a velocity excess occurs. For
the region closer to the wall, for y<y » the opposite situation
prevails. Thus, a velocity excess tendLV%$maévelop in the outer region
' for large times, and this may travel downstream to interact with a new
] i burst.

For large times the effects of pressure must be taken into account,
i which may be accomplished through application of (55). By substituting
: into (57) the exponential approximation (62) for the velocity profile, G
becomes, expressed in wall variables
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Figure 8. Typical streak lines. Upper curve, y greater than
value A for which Ivol is maximum.,

Lower curve, y <y .
Ivgimax

" = - sin [4‘;—,{] Ho(tfut - xh) (63)
nz U t's .

in which, in accordance with (62), U' = 16 and 6% = 16. With x*/t+ = u'.
this gives a spanwise wave length of &

+ + 04 4+ .
A, = 28T UL /UT e 100 Uy, /U (64)

Since initial disturbances of finite spanwise scales always give rise
to propagation velocities less than the free-streamvelocity, this ex-
pression gives a somewhat larger spanwise streak spacing than the
accepted experimental value of ¥ = 100 (see Gupta et al., 1971). How-
ever, for such a small scale the basic assumption of the theory, namely
that the horizontal scale is large compared to the thickness of the wall
layer, is of questionable validity. Even more serious is the neglect

of viscosity for this case, since it is likely to have a considerable
effect on the dispersion characteristics of the pressure waves. There-
fore, the fairly good quantitative agreement between theory and expe-
riments in this case is probably fortuitous.

6. CONCLUSIONS

The simple theoretical model presented here is based on the assump-
tion that the interaction mechanism responsible for the generation of
turbulent fluctuations is basically inviscid and involves the inter-
action of eddy motion of two disparate length scales, a large-scale one,
typically of a dimension of the order of the boundary layer thickness,
and a small-scale one, of a dimension smaller than the thickness of the
i wall layer. The large-scale eddy is set into motion by the action of
| the nonuniform Reynolds stresses produced by inflectional instability
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of a thin internal shear layer. The turbulent mixing due to this insta-
bility can be shown to induce a slow forward rotation of the large-scale
flow, in a sense opposite to the mean shear. That bursting regions in-
deed show such a rotation has recently been found in pipe-flow experi-
ments by Sabot & Comte-Bellot (1976).

Under the assumption that the horizontal dimensions of the large-
scale field are large compared to the thickness of the wall layer it can
be shown that the effects of pressure and of nonlinearity on the evolu-
tion of the large-scale eddy may be neglected during short and moderate
times after its initiation. By use of a Lagrangian analysis a simple
formula for the displacement of the fluid element in the direction nor-
mal to the wall could then be derived. From this, one may then easily
calculate the streamwise perturbation velocity in the spirit of
Prandt1”s mixing-length theory.

From the approximate theory one can demonstrate that a localized
disturbance tends to develop into a thin shear layer during its down-
stream travel. A numerical example presented to illustrate the theory
shows clearly this tendency and also gives qualitative agreement with
conditionally averaged data obtained in the experiments by Blackwelder &
Kaplan (1972). For large times after the intitiation of the disturbance,
measured in terms of the time it requires to be convected downstream a
distance equal to its own length, nonlinearity, pressure, and viscosity
may all become important. Nonlinear effects may be handled fairly easily
by the theory for cases for which the pressure gradient effects are
small.

The effects of pressure, which provide the most intricate part of
the analysis, were studied on:basis of the Tinearized equations. It was
found that for large times the pressure waves will give rise to an elon-
gated pattern whose streamwise length will rontinue to grow as the long
waves become more and more dominant. The flow will thus become increas-

ingly two-dimensional in planes normal to the x-axis within this pattern.

From (30) it therefore follows that the pressure effect will depend pri-
marily on p,, At a spanwise pressure maximum, p;; will be negative,
and the confribution to %m will be negative, i.e., the flow will be
speeded up. The opposite will be true for a pressure minimum. Since a
region of pzz < 0 must always have neighboring spanwise regions of
pzz > 0, a high-speed streak could be expected to be located between
two low-speed streaks. That low-speed streaks tend to occur in pairs is
consistent with observations of the streaky structure in the viscous
sublayer (see Gupta et al., 1971). The present theory also gives an
estimate of the spacing between longitudinal streaks in terms of the
¥ave propagation characteristics for waves of large streamwise wave
engths.

It has been proposed by Offen & Kline (1975) and others that the
inflectional region preceding breakdown is caused by a large-scale tra-
velling pressure disturbance, originating in the outer portions of the
boundary layer, which will retard the fluid elements near the wall
through the action of a local adverse pressure gradient. Measurements
reported by Willmarth (1975) show that intermittent Reynolds stress pro-

eyt e,




duction is associated with the passage of a large-scale pressure minimum
which would indicate that the fluid near the wall, having a velocity
less than the convection velocity of the pressure, had been subjected to
retardation by a positive pressure gradient just before bursting. An
estimate on basis of the present inviscid theory gives, in contrast,
that this effect tends asymptotically to zero as the time of travel of
the disturbance tends to infinity. The result of the present theory that
a large lift-up would occur at a spanwise minimum of the pressure is not
inconsistent with the experimental findings, however.

Simple estimates show that viscosity is Tikely to become important
at about the same time pressure effects begin to be felt. From compari-
sons between the viscous and inviscid stability analysis, it could be
expected that the propagation characteristics of the waves induced
during the large-scale motion will be changed considerably by viscosity.
An initial-value analysis similar to the one carried out here but with
viscosity taken into account would therefore be desirable. Some initial
efforts in this direction have been made by Gustavsson (1978) but the
analysis becomes considerably more complicated than the one presented
here and the results much more difficult to interpret.
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